Unten sehen Sie meine C-Methode, um Bollinger Bands für jeden Punkt zu berechnen (gleitender Durchschnitt, Up-Band, Down-Band). Wie Sie sehen können, verwendet diese Methode 2 für Loops, um die bewegte Standardabweichung mit dem gleitenden Durchschnitt zu berechnen. Es enthielt eine zusätzliche Schleife, um den gleitenden Durchschnitt über die letzten n Perioden zu berechnen. Diese konnte ich entfernen, indem ich den neuen Punktwert zu Beginn des Loops zum totalaverage hinzufüge und den i - n Punktwert am Ende der Schleife beseitige. Meine Frage ist jetzt grundsätzlich: Kann ich die restliche innere Schleife in einer ähnlichen Weise entfernen, die ich mit dem gleitenden Durchschnitt gehandhabt habe, fragte Jan 31 13 um 21:45 Die Antwort ist ja, können Sie. Mitte der 80er Jahre entwickelte ich gerade einen solchen Algorithmus (vermutlich nicht original) in FORTRAN für eine Prozessüberwachungs - und Steuerungsanwendung. Leider war das vor über 25 Jahren und ich erinnere mich nicht an die genauen Formeln, aber die Technik war eine Erweiterung des einen für bewegte Durchschnitte, mit Berechnungen zweiter Ordnung statt nur linearen. Nach dem Betrachten deines Codes einige, denke ich, dass ich aussäumen kann, wie ich es damals getan habe. Beachten Sie, wie Ihre innere Schleife eine Summe von Quadraten macht: in der gleichen Weise, dass Ihr Durchschnitt ursprünglich eine Summe von Werten hatte. Die einzigen zwei Unterschiede sind die Reihenfolge (ihre Macht 2 anstelle von 1) und dass Sie den Durchschnitt subtrahieren Jeder Wert, bevor du ihn quadratst. Nun, das könnte unzertrennlich aussehen, aber in Wirklichkeit können sie getrennt werden: Jetzt ist der erste Begriff nur eine Summe von Quadraten, du gehst damit in der gleichen Weise, dass du die Summe der Werte für den Durchschnitt machst. Der letzte Term (k2n) ist nur die durchschnittliche quadratische Zeit der Periode. Da du das Ergebnis sowieso bis dahin teilt, kannst du einfach den neuen Mittelwert ohne die zusätzliche Schleife hinzufügen. Schließlich, im zweiten Term (SUM (-2vi) k), da SUM (vi) total kn können Sie es dann in diese ändern: oder nur -2k2n. Das ist -2 mal das durchschnittliche Quadrat, sobald die Periode (n) wieder aufgeteilt ist. Also die endgültige kombinierte Formel ist: (achten Sie darauf, die Gültigkeit von diesem zu überprüfen, da ich es aus der Oberseite meines Kopfes ableiten) Und die Einbindung in Ihren Code sollte so etwas aussehen: Vielen Dank dafür. Ich habe es als Grundlage für eine Implementierung in C für die CLR verwendet. Ich entdeckte, dass in der Praxis können Sie so aktualisieren, dass newVar ist eine sehr kleine negative Zahl, und die sqrt scheitert. Ich habe eine if eingeführt, um den Wert auf Null für diesen Fall zu begrenzen. Nicht Idee, aber stabil. Dies geschah, als jeder Wert in meinem Fenster den gleichen Wert hatte (ich benutzte eine Fenstergröße von 20 und der Wert in Frage war 0,5, falls jemand versucht, es zu versuchen und zu reproduzieren.) Ndash Drew Noakes Jul 26 13 um 15:25 Ive Gebraucht commons-mathe (und dazu beigetragen, dass Bibliothek) für etwas sehr ähnlich zu diesem. Seine Open-Source, Portierung zu C sollte einfach sein, wie Shop-gekauft Kuchen (haben Sie versucht, eine Torte von Grund auf neu). Check it out: commons. apache. orgmathapi-3.1.1index. html. Sie haben eine StandardDeviation Klasse. Gehe in die Stadt beantwortet Jan 31 13 um 21:48 You39re Willkommen Sorry Ich didn39t haben die Antwort you39re suchen. Ich habe definitiv nicht bedeuten, Portierung der gesamten Bibliothek nur die minimale notwendige Code, die ein paar hundert Zeilen oder so sein sollte. Beachten Sie, dass ich keine Ahnung habe, welche gesetzlichen Urheberrechtsbeschränkungen Apache auf diesen Code hat, also musst du das heraus überprüfen. Wenn du es verfolgst, hier ist der Link. So dass Variance FastMath ndash Jason Jan 31 13 um 22:36 Die wichtigsten Informationen wurden bereits oben gegeben - aber vielleicht ist das immer noch von allgemeinem Interesse. Eine kleine Java-Bibliothek zur Berechnung des gleitenden Durchschnitts und der Standardabweichung steht hier zur Verfügung: githubtools4jmeanvar Die Implementierung basiert auf einer Variante der oben genannten Welfords-Methode. Methoden zum Entfernen und Ersetzen von Werten wurden abgeleitet, die für das Verschieben von Wertfenstern verwendet werden können. Durchgehende Mittelwerte Durchgehende Mittelwerte Bei herkömmlichen Datensätzen ist der Mittelwert oft der erste und eine der nützlichsten Zusammenfassungsstatistiken zu berechnen. Wenn Daten in Form einer Zeitreihe vorliegen, ist das Serienmittel ein nützliches Maß, entspricht aber nicht der Dynamik der Daten. Mittelwerte, die über kurzgeschlossene Perioden berechnet werden, die entweder der aktuellen Periode vorausgeht oder auf der aktuellen Periode zentriert sind, sind oft nützlicher. Weil diese Mittelwerte variieren oder sich bewegen, wenn sich die aktuelle Periode von der Zeit t 2, t 3 usw. bewegt, werden sie als gleitende Mittelwerte (Mas) bezeichnet. Ein einfacher gleitender Durchschnitt ist (typischerweise) der ungewichtete Durchschnitt von k vorherigen Werten. Ein exponentiell gewichteter gleitender Durchschnitt ist im Wesentlichen derselbe wie ein einfacher gleitender Durchschnitt, aber mit Beiträgen zum Mittelwert, der durch ihre Nähe zur aktuellen Zeit gewichtet wird. Weil es nicht eine, sondern eine ganze Reihe von gleitenden Durchschnitten für jede gegebene Serie gibt, kann der Satz von Mas selbst auf Graphen aufgetragen, als Serie analysiert und bei der Modellierung und Prognose verwendet werden. Eine Reihe von Modellen kann mit gleitenden Durchschnitten konstruiert werden, und diese sind als MA-Modelle bekannt. Wenn solche Modelle mit autoregressiven (AR) Modellen kombiniert werden, sind die resultierenden Composite-Modelle als ARMA - oder ARIMA-Modelle bekannt (die I ist für integriert). Einfache Bewegungsdurchschnitte Da eine Zeitreihe als ein Satz von Werten betrachtet werden kann, kann t 1,2,3,4, n der Mittelwert dieser Werte berechnet werden. Wenn wir annehmen, daß n ziemlich groß ist und wir eine ganze Zahl k wählen, die viel kleiner als n ist. Wir können einen Satz von Blockdurchschnitten oder einfache gleitende Mittelwerte (der Ordnung k) berechnen: Jede Maßnahme repräsentiert den Mittelwert der Datenwerte über ein Intervall von k Beobachtungen. Beachten Sie, dass die erste mögliche MA der Ordnung k gt0 die für t k ist. Im Allgemeinen können wir den zusätzlichen Index in den obigen Ausdrücken fallen lassen und schreiben: Dies besagt, dass der geschätzte Mittelwert zum Zeitpunkt t der einfache Durchschnitt des beobachteten Wertes zum Zeitpunkt t und der vorhergehenden k -1 Zeitschritte ist. Wenn Gewichte angewendet werden, die den Beitrag von Beobachtungen, die weiter weg in der Zeit sind, verringern, wird der gleitende Durchschnitt exponentiell geglättet. Bewegliche Mittelwerte werden oft als eine Form der Prognose verwendet, wobei der Schätzwert für eine Reihe zum Zeitpunkt t 1, S t1. Wird als MA für den Zeitraum bis einschließlich Zeit t genommen. z. B. Die heutige Schätzung basiert auf einem Durchschnitt der bisher aufgezeichneten Werte bis einschließlich gestern (für Tagesdaten). Einfache gleitende Durchschnitte können als eine Form der Glättung gesehen werden. In dem unten dargestellten Beispiel wurde der in der Einleitung zu diesem Thema gezeigte Luftverschmutzungs-Datensatz um eine 7-Tage-Gleitende Durchschnitt (MA) - Linie erweitert, die hier in rot dargestellt ist. Wie man sehen kann, glättet die MA-Linie die Gipfel und Tröge in den Daten und kann sehr hilfreich bei der Identifizierung von Trends sein. Die Standard-Vorwärtsberechnungsformel bedeutet, dass die ersten k -1 Datenpunkte keinen MA-Wert haben, aber danach rechnen die Berechnungen bis zum endgültigen Datenpunkt in der Serie. PM10 tägliche Mittelwerte, Greenwich Quelle: London Air Quality Network, londonair. org. uk Ein Grund für die Berechnung einfacher gleitender Durchschnitte in der beschriebenen Weise ist, dass es ermöglicht, Werte für alle Zeitschlitze von der Zeit tk bis zur Gegenwart berechnet werden, und Da eine neue Messung für die Zeit t 1 erhalten wird, kann die MA für die Zeit t 1 dem bereits berechneten Satz hinzugefügt werden. Dies stellt eine einfache Prozedur für dynamische Datensätze zur Verfügung. Allerdings gibt es einige Probleme mit diesem Ansatz. Es ist vernünftig zu argumentieren, dass der Mittelwert über die letzten 3 Perioden, sagen wir, zum Zeitpunkt t -1 liegen sollte, nicht Zeit t. Und für eine MA über eine gerade Anzahl von Perioden vielleicht sollte es sich am Mittelpunkt zwischen zwei Zeitintervallen befinden. Eine Lösung für dieses Problem ist die Verwendung von zentrierten MA-Berechnungen, bei denen das MA zum Zeitpunkt t der Mittelwert eines symmetrischen Satzes von Werten um t ist. Trotz seiner offensichtlichen Verdienste wird dieser Ansatz im Allgemeinen nicht verwendet, weil es erfordert, dass Daten für zukünftige Ereignisse verfügbar sind, was möglicherweise nicht der Fall ist. In Fällen, in denen die Analyse vollständig aus einer bestehenden Serie besteht, kann die Verwendung von zentriertem Mas vorzuziehen sein. Einfache gleitende Durchschnitte können als eine Form der Glättung betrachtet werden, wobei einige hochfrequente Komponenten einer Zeitreihe entfernt werden und die Trends in ähnlicher Weise wie der allgemeine Begriff der digitalen Filterung hervorgehoben werden (aber nicht entfernen) werden. In der Tat sind gleitende Mittelwerte eine Form des linearen Filters. Es ist möglich, eine gleitende Durchschnittsberechnung auf eine Reihe anzuwenden, die bereits geglättet worden ist, d. h. Glätten oder Filtern einer bereits geglätteten Reihe. Zum Beispiel können wir mit einem gleitenden Durchschnitt von Ordnung 2, wie sie mit Gewichten berechnet werden, also die MA bei x 2 0,5 x 1 0,5 x 2 betrachten. Ebenso ist die MA bei x 3 0,5 x 2 0,5 x 3. Wenn wir Eine zweite Glättung oder Filterung anwenden, so haben wir 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 dh die zweistufige Filterung Prozess (oder Faltung) hat einen variabel gewichteten symmetrischen gleitenden Durchschnitt mit Gewichten erzeugt. Mehrere Windungen können sehr komplexe gewichtete Bewegungsdurchschnitte erzeugen, von denen einige von besonderem Gebrauch in spezialisierten Bereichen, wie in Lebensversicherungsberechnungen, gefunden wurden. Bewegliche Mittelwerte können verwendet werden, um periodische Effekte zu entfernen, wenn sie mit der Länge der Periodizität als bekannt berechnet werden. Zum Beispiel, mit monatlichen Daten saisonale Variationen können oft entfernt werden (wenn dies das Ziel ist), indem Sie einen symmetrischen 12-Monats-gleitenden Durchschnitt mit allen Monaten gleich gewichtet, mit Ausnahme der ersten und letzten, die mit 12 gewichtet werden. Dies ist, weil es wird 13 Monate im symmetrischen Modell (aktuelle Zeit, t. - 6 Monate). Die Summe wird durch 12 geteilt. Ähnliche Verfahren können für jede klar definierte Periodizität angenommen werden. Exponentiell gewichtete Bewegungsdurchschnitte (EWMA) Mit der einfachen gleitenden Durchschnittsformel: Alle Beobachtungen werden gleich gewichtet. Wenn wir diese gleichen Gewichte nennen, alpha t. Jedes der k Gewichte würde 1 k betragen. So wäre die Summe der Gewichte 1, und die Formel wäre: Wir haben bereits gesehen, dass mehrere Anwendungen dieses Prozesses dazu führen, dass die Gewichte variieren. Bei exponentiell gewichteten Bewegungsdurchschnitten wird der Beitrag zum Mittelwert aus Beobachtungen, die in der Zeit mehr entfernt werden, reduziert und damit neue (lokale) Ereignisse hervorgehoben. Im wesentlichen wird ein Glättungsparameter, 0lt alpha lt1, eingeführt und die Formel überarbeitet: Eine symmetrische Version dieser Formel wäre von der Form: Werden die Gewichte im symmetrischen Modell als Begriffe der Binomialexpansion ausgewählt, (1212) 2q. Sie werden auf 1 summieren, und wenn q groß wird, wird die Normalverteilung angenähert. Dies ist eine Form der Kernel-Gewichtung, wobei die Binomie als Kernfunktion fungiert. Die im vorigen Unterabschnitt beschriebene zweistufige Faltung ist genau diese Anordnung, wobei q 1 die Gewichte ergibt. Bei der exponentiellen Glättung ist es notwendig, einen Satz von Gewichten zu verwenden, die auf 1 summieren und die Größe geometrisch verkleinern. Die verwendeten Gewichte sind typischerweise in der Form: Um zu zeigen, dass diese Gewichte auf 1 summieren, betrachten wir die Ausdehnung von 1 als Reihe. Wir können den Ausdruck in Klammern mit der Binomialformel (1- x) p schreiben und erweitern. Wobei x (1-) und p -1, was ergibt: Dies ergibt dann eine Form des gewichteten gleitenden Durchschnitts der Form: Diese Summation kann als eine Wiederholungsrelation geschrieben werden, die die Berechnung stark vereinfacht und das Problem vermeidet, dass das Gewichtungsregime Sollte strikt unendlich sein, damit die Gewichte auf 1 summieren (für kleine Werte von alpha ist dies normalerweise nicht der Fall). Die Notation, die von verschiedenen Autoren verwendet wird, variiert. Manche verwenden den Buchstaben S, um anzuzeigen, daß die Formel im wesentlichen eine geglättete Variable ist und schreibt: Während die Kontrolle Theorie Literatur oft Z anstelle von S für die exponentiell gewichteten oder geglätteten Werte verwendet (siehe z. B. Lucas und Saccucci, 1990, LUC1 , Und die NIST-Website für weitere Details und bearbeitete Beispiele). Die oben zitierten Formeln stammen aus der Arbeit von Roberts (1959, ROB1), aber Hunter (1986, HUN1) verwendet einen Ausdruck der Form: die für die Verwendung in einigen Kontrollverfahren besser geeignet ist. Bei alpha 1 ist die mittlere Schätzung einfach der gemessene Wert (oder der Wert des vorherigen Datenelementes). Mit 0,5 ist die Schätzung der einfache gleitende Durchschnitt der aktuellen und früheren Messungen. Bei der Vorhersage der Modelle ist der Wert S t. Wird oft als Schätz - oder Prognosewert für den nächsten Zeitraum verwendet, dh als Schätzung für x zum Zeitpunkt t 1. Damit haben wir: Dies zeigt, dass der Prognosewert zum Zeitpunkt t 1 eine Kombination aus dem vorherigen exponentiell gewichteten gleitenden Durchschnitt ist Plus eine Komponente, die den gewichteten Vorhersagefehler darstellt, epsilon. Zum Zeitpunkt t. Unter der Annahme, dass eine Zeitreihe gegeben ist und eine Prognose erforderlich ist, ist ein Wert für Alpha erforderlich. Dies kann aus den vorhandenen Daten abgeschätzt werden, indem die Summe der quadratischen Vorhersagefehler mit variierenden Werten von alpha für jedes t 2,3 ausgewertet wird. Einstellung der ersten Schätzung als der erste beobachtete Datenwert x 1. Bei den Steuerungsanwendungen ist der Wert von alpha wichtig, der bei der Bestimmung der oberen und unteren Kontrollgrenzen verwendet wird und die erwartete durchschnittliche Lauflänge (ARL) beeinflusst Bevor diese Kontrollgrenzen kaputt sind (unter der Annahme, dass die Zeitreihe einen Satz von zufälligen, identisch verteilten unabhängigen Variablen mit gemeinsamer Varianz darstellt). Unter diesen Umständen ist die Varianz der Kontrollstatistik: (Lucas und Saccucci, 1990): Kontrollgrenzen werden gewöhnlich als feste Vielfache dieser asymptotischen Varianz gesetzt, z. B. - 3 mal die Standardabweichung. Wenn beispielsweise Alpha 0,25 und die zu überwachenden Daten eine Normalverteilung N (0,1) haben, wenn die Kontrolle begrenzt wird, werden die Regelgrenzen - 1.134 sein und der Prozeß erreicht eine oder andere Grenze in 500 Schritten im Durchschnitt. Lucas und Saccucci (1990 LUC1) leiten die ARLs für eine breite Palette von Alpha-Werten und unter verschiedenen Annahmen mit Markov Chain Verfahren ab. Sie tabellieren die Ergebnisse, einschließlich der Bereitstellung von ARLs, wenn der Mittelwert des Kontrollprozesses um ein Vielfaches der Standardabweichung verschoben wurde. Zum Beispiel ist bei einer 0,5-Schicht mit alpha 0,25 die ARL weniger als 50 Zeitschritte. Die oben beschriebenen Ansätze werden als einzelne exponentielle Glättung bezeichnet. Da die Prozeduren einmal auf die Zeitreihen angewendet werden und dann analysiert oder kontrolliert werden, werden Prozesse auf dem resultierenden geglätteten Datensatz durchgeführt. Wenn der Datensatz einen Trend und saisonale Komponenten enthält, kann eine zweidimensionale oder dreistufige Exponentialglättung als Mittel zur Beseitigung (expliziten Modellierung) dieser Effekte angewendet werden (siehe weiter unten den Abschnitt "Vorhersage" und das NIST-Beispiel). CHA1 Chatfield C (1975) Die Analyse der Times-Serie: Theorie und Praxis. Chapman und Hall, London HUN1 Hunter J S (1986) Der exponentiell gewichtete gleitende Durchschnitt. J von Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Exponentiell gewichtete Moving Average Control Schemes: Eigenschaften und Erweiterungen. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolltabelle Tests basierend auf geometrischen Moving Averages. Technometrics, 1, 239-250Announcement 04 Nov 2014, 19:36 Sehr geehrte alle, ich arbeite mit einem unsymmetrischen Panel-Datensatz, wo das Panel var ist die Fonds-Nummer und die Zeit var ist der Monat. So arbeite ich mit monatlichen Zeitreihen, aber mit Lücken. Was ich will, ist, das 3-jährige Sharpe-Verhältnis zu berechnen und auch das 3-jährige Jensens-Alpha für jeden Fonds. Also, wenn ich im Jahr 1992 bin, möchte ich die Sharpe-Ratio für dieses Jahr mit den monatlichen Beobachtungen der Jahre 1992 1991 1990 berechnen. Um dies zu tun, brauche ich den Mittelwert und die Sd der Überschussrenditen eines jeden Fonds in diesem Zeitraum. Darüber hinaus möchte ich das Jensens Alpha abschätzen, indem ich das CAPM-Modell unter Verwendung der monatlichen Beobachtungen aus den Jahren 1992 1991 1990 verwende. Um dies zu tun, könnte ich den Befehl statsby verwenden und die Koeffizienten einer Regression verwenden, die während dieses Zeitraums läuft. Ich habe versucht, viele Befehle wie Rollreg, movavg, ma etc und auch einige Einheimische mit foreachforvalues aber ich kann sie nicht beschäftigen, da ich nicht eine ausgewogene Panel und ich möchte nicht, um Geld zu beseitigen, weil ich ein oder zwei Lücken haben könnte. Dies ist ein Beispiel für meine Datenmenge o ryear Monat mktrf smb hml umd ExcessR s ---------------------------------- ----------------------------------------- 2 1997 1. 2 1997 2 -. 0049 -.0261 .0469 -.0204. 2 1997 3 -.0503 -.0032 .0386 .0094 -.0181431 2 1997 4 .0404 -.0519 -.0102 .0489 .0117428 2 1997 5 .0674 .0483 -.0438 -.0519 .0372053 ---- -------------------------------------------------- --------------------- 2 1997 6 .041 .015 .0072 .0259 .0310222 2 1997 7 .0733 -.0252 -.0013 .0384 .0402394 2 1997 8 -.0415 .0734 .0137 -.0252 -.0292168 2 1997 9 .0535 .0268 -.0025 .0145 .0381404 2 1998 1 .0015 -.0094 -0207 .001 .0056473 ------ -------------------------------------------------- ------------------- 2 1998 2 .0703 .0032 -.0086 -.011 .0395531 2 1998 3 .0476 -.0099 .0123 .0214 .0277491 2 1998 4 .0073 .0048 .0027 .0078 .0005439 2 1998 5 -.0307 -.0354 .0412 .0189 -.0093562 2 1998 6 .0318 -.0315 -.0222 .0726 .002362 -------- -------------------------------------------------- ----------------- 2 1998 7 -.0246 -.0492 -.0115 .0371 -.0232616 2 1998 8 -.1608 -.0575 .0524 .0187 -.091043 2 1998 9 .0615 -.0015 -.0388 -.0063 .0222817 2 1998 10 .0713 -.032 -.0277 -.0535 .0311223 2 1998 11 .061 .0114 -.0343 .0118 .0300834 ---- -------------------------------------------------- --------------------- 2 1998 12 .0616 -.003 -.047 .0904 .0168859 7 1994 1 .0287 .0014 .021 .0001 .0183894 7 1994 2 -.0256 .0272 -.0141 -.0026 -.0170168 7 1994 3 -.0478 -.0096 .0134 -.0132 -.0656004 7 1994 4 .0068 -.0091 .0169 .0041 -.0032034 - -------------------------------------------------- ----------------------- 7 1994 5 .0058 -.0201 .0018 -.0216 -.0093189 7 1994 6 -.0303 -.0048 .0168 -0083 -.0506594 7 1994 7 .0282 -.0178 .0098 .0019 .0199595 7 1994 8 .0401 .0145 -.0347 .0154 .0419298 7 1994 9 -.0231 .0268 -.0181 .0131 -.0135341 -------------------------------------------------- ------------------------- 7 1994 10 .0134 -.022 -.0236 .0145 .0129598 7 1994 11 -.0404 -.0017 - .0005 -.0019 -.0433825 7 1994 12 .0086 .0005 .0026 .035 .0152948 05 Nov 2014, 11:35 Vielen Dank für Ihre Beiträge. In Bezug auf die Sharpe Ratio ist dies der Code, den ich geschrieben habe und mein Problem lösen. Gen MeanVWExcRetGr. Sortieren crspfundno ryear Monat forval i1990 (1) 2013 lokal mi-2 von crspfundno. Egen Meanimean (VWExcRetGr) Wenn ryearlti amp ryeargtm ersetzen MeanVWExcRetGrMeani Wenn ryeari Sein nicht perfekt ist, aber ich habe meine Mittel in einer Spalte jetzt so jedes Jahr habe ich den gleichen Wert des rollenden Mittels innerhalb meiner monatlichen Beobachtungen (egen). Ich sage seine nicht perfekt, weil in den Befehlen ich nicht spezifizieren, dass ich die Werte nur in dem Fall, dass ich 3 Jahre Beobachtungen haben durchschnittlich. So berechnet es auch den Mittelwert in dem Fall, in dem ich 2 Jahre Beobachtungen habe. Die gute Nachricht ist, dass ich mich diese Beobachtungen beseitigen kann. Ich stelle das oben, weil ich will, dass du verstehst, was ich genau brauche. Ich möchte das Alpha und Beta haben, jeder in einer Spalte, damit ich sie benutzen kann, um sie auf andere Variablen zurückzukehren. Daher möchte ich im Jahr 1995 für den Fonds Nr. 100, der zum Beispiel 11 monatliche Beobachtungen hat, die Alpha-Ausgabe der 3-Jahres-Rolling (1995,1994,1993) Capm4-Faktor-Capm-Regression in den 11 Reihen wiederholen - Zellen der Alpha-Spalte. Gleiches gilt für Beta. Ich habe den Mata-Code mit einigen Änderungen angewendet. Egen g group (crspfundno) gen alpha. Mata mata klare stview (crspfundno. Quotcrspfundno quot) stview (ryear. Quotryearquot) stview (vthxcRetGr. QuotVWExcRetGrquot) stview (mktrf. Quotmktrfquot) stview (smb. Quotsmbquot) stview (hd. Quotmail) stview (umd. Quotumdquot) stview (g. (Vgl. 1) für (i1 iltrows (p) i) für (opi, 2 ogtpi, 1 o-) y J (1,1 ,.) XJ (1,5 ,.) B. Für (zu tgtpi, 1 t-) wenn (geh, 1 gt, 1 amp ryearo, 1 - ryeart, 1 lt 2) yy VWExcRetGrt, 1 XX (mktrft, 1, smbt, 1, hmlt, 1, umdt, 1 , 1) yy (2..vögel (y)) ,. XX (2..vögel (X)) ,. Wenn (Zeilen (y) gt6) b invsym (Kreuz (X, X)) Kreuz (X, y) Alphao, 1 b5,1 Ende, aber das Ergebnis ist dieses und es enthält nicht auch Beta. Können Sie mir bitte helfen Fundno Ryear Monat g Alpha 5487 2001 1 478 -.0045781 5487 2001 2 478 -.0049922 5487 2001 3 478 -.0044039 5487 2001 4 478 -.0058963 5487 2001 5 478 -.0057021 5487 2001 6 478 - .0037893 5487 2001 7 478 -.0046226 5487 2001 8 478 -.0027665 5487 2001 9 478 -.0037288 5487 2002 1 478 .0009866 5487 2002 2 478 .0019246 5487 2002 3 478 .0019994 5487 2002 4 478 .002021 5487 2002 5 478 .0025631 5487 2002 6 478 .0019815 5487 2002 7 478 .0037848 5487 2002 8 478 .0035144 5487 2002 9 478 .003802 5487 2002 10 478 .0012915 5487 2002 11 478 .0016832 5487 2002 12 478 .0015888 Ich bin mir nicht sicher, ob Ich verstehe dich. Allerdings wiederholen Sie die Ratschläge in dem Thread, auf die ich Sie früher über nicht mit Mata-Code, während Stata-Code zur Verfügung steht, hier ist ein angepasst Code aus diesem Thread, die die rollende Regression tun wird. Es wird dir viel Zeit bringen, wenn du einen großen Datensatz hast. Lassen Sie mich wissen, wenn es Ihnen viel Zeit braucht. Ich rate Ihnen, die Ergebnisse zu überprüfen. 06 Nov 2014, 08:51 Abraham: Wirklich schnell Mata Code. Ich brauchte nur 1 Minute statt 2 Stunden. Außerdem funktioniert es besser, da es fehlende Werte zurückgibt, wenn ich nur eine einjährige Beobachtung habe. Danke sehr viel. Eine letzte Frage. Wenn ich die Capm Regression brauche, bedeutet das nur VWExcRetGr und mktrf, aber nicht die smb hml umd, ist das, wie der Code wie gen Alpha sein sollte. Gen bMktrf. Mata mata klare stview (crspfundno. Quotcrspfundnoquot) stview (ryear. Quotryearquot) stview (vWExcRetGr. QuotVWExcRetGrquot) stview (mktrf. Quotmktrfquot) stview (alpha. QuotAlphaquot) stview (bMktrf. QuotbMktrfquot) p panelsetup (crspfundno, 1) für (i1 iltrows (P) i) für (opi, 1 oltpi, 2 o) y VWExcRetGro, 1 x (mktrfo, 1 1) b. Für (tpi, 1 tltpi, 2 t) if (zu amp crspfundnoo, 1 crspfundnot, 1 amp (ryearo, 1 - ryeart, 1 lt 2) amp ryearo, 1 gt ryeart, 1) yy VWExcRetGrt, 1 XX (mktrft, 1 1) Wenn (Zeilen (y) gt6) b invsym (Kreuz (X, X)) Kreuz (X, y) Alphao, 1 b2,1 bMktrfo, 1 b1,1 In Ihrem Code berechnen Sie Standardabweichung nach Land und Industrie (zusammenfassend), aber dann ersetzst du diesen Wert in SDx anderer Coutries (in der inneren Schleife). Ist das, was du tun willst, schrieb ich den Mata-Code voraus, dass du die Standardabweichung pro Land und Industrie berechnen willst. Wenn Sie pro Land und Industrie berechnen möchten, müssen Sie hinzufügen: Hier ist der Mata-Code (er berechnet die Standardabweichung auch, wenn das Fenster weniger als 4 Jahre beträgt):
No comments:
Post a Comment